فرض صفر

آزمون تی تک نمونه ای R

پژوهشکده مجازی آمار - آزمون تی تک نمونه ای R

هدف از اجرای آزمون تی تک نمونه ای :

آزمون t تک نمونه ای برای آزمودن فرضیه ی برابری میانگین یک نمونه ()  با میانگین جامعه (µ) که دارای توزیع نرمال است به کار می رود . هدف از اجرای این آزمون سنجیدن برابری میانگین نمونه برآورد شده  ()  با میانگین جامعه (µ) می باشد .

پیش نیازهای آزمون تی تک نمونه ای :

  • داده های عددی باشند .
  • داد ه ها ( نمونه یا جامعه مورد نظر ) از توزیع نرمال پیروی کنند .
  • واریانس نمونه ( جامعه ) ثابت اما نامعلوم است و می بایست با استفاده از نمونه محاسبه یا برآورد شود .

فرض ها و آماره ی آزمون :

فرضیه آزمون در تی تک نمونه ای به صورت زیر مطرح می شود :

 

 

آماره آزمون تی تک نمونه ای به صورت زیر می باشد :

 

 در شرایطی که حجم نمونه کمتر از 30 و واریانس جامعه () نامعلوم باشد نیز ، در اجرای آزمون آماره ی t  به کار می رود .

اکنون مثالی که در مقاله آموزشی آزمون تی تک نمونه ای در SPSS   ارائه کردیم را به خاطر آورید . می خواهیم همان آزمون را با استفاده از نرم افزار R انجام دهیم :

آنالیز واریانس یک راهه minitab one way anova

پژوهشکده مجازی آمار - آنالیز واریانس یک راهه minitab

آنالیز واریانس یک طرفه  ( One Way ANOVA )

پیش فرض های لازم در آنالیز واریانس :

1-نمونه های مورد بررسی باید نمونه های تصادفی مستقل از هم باشند .

2- صفت مورد بررسی در هریک از جامعه ها باید دارای توزیع نرمال باشند .

3- واریانس صفت مورد بررسی در همه جامعه ها برابر باشند.

هدف آنالیز واریانس یک راهه ( One Way ANOVA )

مقایسه میانگین های یک صفت کمی در چندین جامعه ( بیش از دو جامعه ) . در حالت کلی اگر آزمایشی در برگیرنده بیش از دو گروه باشد باید بین هردو گروه با استفاده از آزمون T تعداد زیادی مقایسه بین میانگین ها صورت گیرد که در این حالت تعداد آزمون ها ( تعداد مقایسه ها ) افزایش می یابد و در این صورت احتمال اینکه اختلاف بین گروه ها ( میانگین گروه ها ) به طور تصادفی معنی دار شود افزایش می باید . اما با کمک آنالیز واریانس تنها با یک بار آزمون اختلاف بین میانگین تمام گروه های آزمایش را بررسی می کنیم بدون اینکه احتمال خطا افزایش یابد . در آنالیز واریانس یک طرفه فرض صفر ( فرض اولیه ) این است که هیچ اختلافی بین میانگین گروه های مورد آزمایش وجود ندارد و فرض مقابل این است که بین میانگین حداقل دو گروه اختلاف معنی داری وجود دارد . در حالتی که  فرض صفر (H0 ) پذیرفته شود ، می پذیریم که بین میانگین گروه ها اختلافی وجود ندارد و تحلیل به پایان می رسد . اما در حالتی که فرض صفر رد شود قطعا اختلافی بین گروه ها وجود دارد و باید اختلاف را بیابیم که این امر با استفاده از آزمون های تکمیلی ( آزمون های تعقیبی ) میسر می باشد .

فرض های آزمون :

آزمون تی تک نمونه ای minitab

پژوهشکده مجازی آمار - آزمون تی تک نمونه ای minitab

هدف از اجرای آزمون تی تک نمونه ای :

آزمون t تک نمونه ای ( one sample t -test ) برای آزمودن فرضیه ی برابری میانگین یک نمونه ()  با میانگین جامعه (µ) که دارای توزیع نرمال است به کار می رود . هدف از اجرای این آزمون سنجیدن برابری میانگین نمونه برآورد شده  (x)  با میانگین جامعه (µ) می باشد .

پیش نیازهای آزمون تی تک نمونه ای :

  • داده های عددی باشند .
  • داد ه ها ( نمونه یا جامعه مورد نظر ) از توزیع نرمال پیروی کنند .
  • واریانس نمونه ( جامعه ) ثابت اما نامعلوم است و می بایست با استفاده از نمونه محاسبه یا برآورد شود .

فرض ها و آماره ی آزمون :

فرضیه آزمون در تی تک نمونه ای به صورت زیر مطرح می شود :

H0: μ=μ0H1: μ≠μ0

البته در نرم افزار SPSS و یا در برخی مقاله ها فرضیه ها به صورست زیر مطرح می شوند :

H0: μ-μ0=0H1: μ-μ0≠0

که در عمل هردو حالت فرضیه نویسی به یک نتیجه منجر می شوند و تنها در نوع نوشتار با هم تفاوت دارند .

 

آماره آزمون تی تک نمونه ای به صورت زیر می باشد :

 در شرایطی که حجم نمونه کمتر از 30 و واریانس جامعه () نامعلوم باشد نیز ، در اجرای آزمون آماره ی t  به کار می رود .

آزمون کولموگروف - اسمیرونوف ( K-S ) در SPSS

پژوهشکده مجازی آمار - کلموگروف اسمیرونوف در spss

آزمون کلموگروف اسمیرونوف (K-S) آزمونی جهت تطابق توزیع برای داده های کمی است . زمانی که نمونه‌ای از اندازه های کمی داریم و می‌خواهیم تعیین کنیم که آیا این نمونه از جامعه‌ای با توزیعی خاص مثلاً نرمال  ، پواسون  ، نمایی یا یکنواخت به دست آمده است یا خیر از آزمون کلموگروف اسمیرونوف استفاده می کنیم  . زمانی که پژوهشگر به نرمال بودن نمونه مورد بررسی اش اطمینان ندارد می بایست نرمال بودن نمونه اش را بیازماید بنابراین می توان گفت یکی از پرکاربردترین آزمون ها برای نمونه های کوچک آزمون نرمال بودن آن است . برای این هدف از آزمون کلموگروف اسمیرنوف استفاده می شود  . در نرم افزار spss از این آزمون برای تطابق ۴ توزیع نرمال ، پواسون ، نمایی و یکنواخت می توان استفاده کرد .

آزمون تی دو نمونه مستقل از هم ( Tow Independent Sample ) Mnitab

آزمون t  دو نمونه مستقل از هم در  Minitab

برای مقایسه میانگین  دو نمونه از داده های کمی و مستقل از هم از آزمون t  دو نمونه مستقل از هم  استفاده می کنیم . به عنوان مثال یک دبیر دوره متوسط ادعا می کند دختران درسخوان تر از پسران هستند  و برای اثبات یا رد این ادعا 30 دانش آموز دختر و 30دانش آموز پسر از یک پایه تحصیلی را از دو مدرسه به تصادف انتخاب می کنیم و میانگین معدل آنها را با هم مقایسه می کنیم  . برای اجرای آزمون t  دو نمونه مستقل از هم فرضیه ها به صورت زیر مطرح می شوند :